Муниципальное казенное общеобразовательное учреждение "Дворцовская основная общеобразовательная школа"

Принята на заседании Педагогического совета Протокол № 1 от 30.08.2018 г.

УТВЕРЖДАЮ Директор школы О.А.Епищев Приказ № 53 от 30.08.2018 г.

РАБОЧАЯ ПРОГРАММА ПО ФИЗИКЕ (7 - 9 КЛАССЫ)

Пояснительная записка

Материалы для рабочей программы составлены на основе:

- Закона об образовании в Российской Федерации от 29.12.2012 г. №273-ФЗ
- ФГОС ООО (утвержден приказом Министерства образования и науки Российской Федерации от 17.12.2010 № 1897);
- Образовательной программы МКОУ «Дворцовская ООШ»;
- Учебного плана и календарного графика ОУ;
- Примерные программы по учебным предметам. Физика. 7-9 классы: проект. М.: Просвещение, 2011. -48 с. (Стандарты второго поколения)
- Авторских программ Е.М.Гутник, А.В. Перышкин из сборника "Программы для общеобразовательных учреждений. Физика. Астрономия. 7 11 кл. / сост. В.А. Коровин, В.А. Орлов. М.: Дрофа, 2011.

Для реализации данной программы используется учебно-методический комплекс под редакцией: Перышкин А.В., Физика-7— М.: Дрофа, 2015, Перышкин А.В., Физика-8— М.: Дрофа, 2015, Перышкин А.В., Физика-9 — М.: Дрофа, 2015.

Цели и задачи курса:

Цели, на достижение которых направлено изучение физики в школе, определены исходя из целей общего образования, сформулированных в Федеральном государственном стандарте общего образования и конкретизированы в основной образовательной программе основного общего образования школы:

- повышение качества образования в соответствии с требованиями социальноэкономического и информационного развития общества и основными направлениями развития образования на современном этапе.
- создание комплекса условий для становления и развития личности выпускника в её индивидуальности, самобытности, уникальности, неповторимости в соответствии с требованиями российского общества
- обеспечение планируемых результатов по достижению выпускником целевых установок, знаний, умений, навыков, компетенций и компетентностей, определяемых личностными, семейными, общественными, государственными потребностями и возможностями обучающегося среднего школьного возраста, индивидуальными особенностями его развития и состояния здоровья;
- усвоение учащимися смысла основных понятий и законов физики, взаимосвязи между ними;
- формирование системы научных знаний о природе, ее фундаментальных законах для построения представления о физической картине мира;
- формирование убежденности в познаваемости окружающего мира и достоверности научных методов его изучения;
- развитие познавательных интересов и творческих способностей учащихся и приобретение опыта применения научных методов познания, наблюдения физических явлений, проведения опытов, простых экспериментальных исследований, прямых и косвенных измерений с использованием аналоговых и цифровых измерительных приборов; оценка погрешностей любых измерений;
- систематизация знаний о многообразии объектов и явлений природы, о закономерностях процессов и о законах физики для осознания возможности разумного использования достижений науки в дальнейшем развитии цивилизации;
- формирование готовности современного выпускника основной школы к активной учебной деятельности в информационно-образовательной среде общества, использованию методов познания в практической деятельности, к расширению и углублению физических знаний и выбора физики как профильного предмета для продолжения образования;

- организация экологического мышления и ценностного отношения к природе, осознание необходимости применения достижений физики и технологий для рационального природопользования;
- понимание физических основ и принципов действия (работы) машин и механизмов, средств передвижения и связи, бытовых приборов, промышленных технологических процессов, влияния их на окружающую среду; осознание возможных причин техногенных и экологических катастроф;
- формирование представлений о нерациональном использовании природных ресурсов и энергии, загрязнении окружающей среды как следствие несовершенства машин и механизмов;
- овладение основами безопасного использования естественных и искусственных электрических и магнитных полей, электромагнитных и звуковых волн, естественных и искусственных ионизирующих излучений во избежание их вредного воздействия на окружающую среду и организм человека;
- развитие умения планировать в повседневной жизни свои действия с применением полученных знаний законов механики, электродинамики, термодинамики и тепловых явлений с целью сбережения здоровья;
- развитие духовно нравственного воспитания.

Достижение целей рабочей программы по физике *обеспечивается решением следующих задач*:

- сохранение и укрепление физического, психологического и социального здоровья обучающихся, обеспечение их безопасности;
- формирование позитивной мотивации обучающихся к учебной деятельности;
- обеспечение условий, учитывающих индивидуально-личностные особенности обучающихся;
- совершенствование взаимодействия учебных дисциплин на основе интеграции;
- внедрение в учебно-воспитательный процесс современных образовательных технологий, формирующих ключевые компетенции;
- развитие дифференциации обучения;
- знакомство обучающихся с методом научного познания и методами исследования объектов и явлений природы;
- приобретение обучающимися знаний о механических, тепловых, электромагнитных и квантовых явлениях, физических величинах, характеризующих эти явления;
- формирование у обучающихся умений наблюдать природные явления и выполнять опыты, лабораторные работы и экспериментальные исследования с использованием измерительных приборов, широко применяемых в практической жизни;
- овладение обучающимися общенаучными понятиями: природное явление, эмпирически установленный факт, проблема, гипотеза, теоретический вывод, результат экспериментальной проверки;
- понимание обучающимися отличий научных данных от непроверенной информации, ценности науки для удовлетворения бытовых, производственных и культурных потребностей человека.

Программа имеет базовый уровень, рассчитана на учащихся 7-9 классов общеобразовательной школы.

МКОУ «Дворцовская ООШ», является ресурсным центром в рамках реализации практической части программы деятельности федеральной стажировочной площадки по направлению «Духовно-нравственное воспитание и развитие подрастающего поколения». Поэтому материал каждого урока подобран с учетом способности обучающихся к нравственному самосовершенствованию.

Новизной данной программы является духовно-нравственное направление: формирование нравственных чувств и нравственно-этической ориентации детей,

создание мотивации к совершению хороших поступков и к оказанию помощи окружающим людям. Программа занятий включает историю русской и зарубежной физики, богатой фактами, знакомство с которыми способствует христианскому взгляду на вещи (например, великий английский физик и математик Исаак Ньютон был еще и богословом); анализ цитат духовно-нравственной тематики великих физиков; практические задачи, отражающие исторические факты и рассмотрение этих фактов с позиции нравственных ориентиров; знакомство с биографией великих ученых (М. Ломоносов, С. Ковалевская, К.Э.Циолковский и др.); а также содержит систему практической деятельности позволяющей вырабатывать правильную модель поведения.

Пояснительная записка

Материалы для рабочей программы составлены на основе:

- Закона об образовании в Российской Федерации от 29.12.2012 г. №273-ФЗ
- ФГОС ООО (утвержден приказом Министерства образования и науки Российской Федерации от 17.12.2010 № 1897);
- Образовательной программы МКОУ «Дворцовская ООШ»;
- Учебного плана и календарного графика ОУ;
- Примерные программы по учебным предметам. Физика. 7-9 классы: проект. М.: Просвещение, 2011. -48 с. (Стандарты второго поколения)
- Авторских программ Е.М.Гутник, А.В. Перышкин из сборника "Программы для общеобразовательных учреждений. Физика. Астрономия. 7 11 кл. / сост. В.А. Коровин, В.А. Орлов. М.: Дрофа, 2011.

Для реализации данной программы используется учебно-методический комплекс под редакцией: Перышкин А.В., Физика-7— М.: Дрофа, 2015, Перышкин А.В., Физика-8— М.: Дрофа, 2015, Перышкин А.В., Физика-9 — М.: Дрофа, 2015.

Цели и задачи курса:

Цели, на достижение которых направлено изучение физики в школе, определены исходя из целей общего образования, сформулированных в Федеральном государственном стандарте общего образования и конкретизированы в основной образовательной программе основного общего образования школы:

- повышение качества образования в соответствии с требованиями социальноэкономического и информационного развития общества и основными направлениями развития образования на современном этапе.
- создание комплекса условий для становления и развития личности выпускника в её индивидуальности, самобытности, уникальности, неповторимости в соответствии с требованиями российского общества
- обеспечение планируемых результатов по достижению выпускником целевых установок, знаний, умений, навыков, компетенций и компетентностей, определяемых личностными, семейными, общественными, государственными потребностями и возможностями обучающегося среднего школьного возраста, индивидуальными особенностями его развития и состояния здоровья;
- усвоение учащимися смысла основных понятий и законов физики, взаимосвязи между ними;
- формирование системы научных знаний о природе, ее фундаментальных законах для построения представления о физической картине мира;
- формирование убежденности в познаваемости окружающего мира и достоверности научных методов его изучения;
- развитие познавательных интересов и творческих способностей учащихся и приобретение опыта применения научных методов познания, наблюдения физических явлений, проведения опытов, простых экспериментальных исследований, прямых и косвенных измерений с использованием аналоговых и цифровых измерительных приборов; оценка погрешностей любых измерений;
- систематизация знаний о многообразии объектов и явлений природы, о закономерностях процессов и о законах физики для осознания возможности разумного использования достижений науки в дальнейшем развитии цивилизации;
- формирование готовности современного выпускника основной школы к активной учебной деятельности в информационно-образовательной среде общества, использованию методов познания в практической деятельности, к расширению и углублению физических знаний и выбора физики как профильного предмета для продолжения образования;

- организация экологического мышления и ценностного отношения к природе, осознание необходимости применения достижений физики и технологий для рационального природопользования;
- понимание физических основ и принципов действия (работы) машин и механизмов, средств передвижения и связи, бытовых приборов, промышленных технологических процессов, влияния их на окружающую среду; осознание возможных причин техногенных и экологических катастроф;
- формирование представлений о нерациональном использовании природных ресурсов и энергии, загрязнении окружающей среды как следствие несовершенства машин и механизмов;
- овладение основами безопасного использования естественных и искусственных электрических и магнитных полей, электромагнитных и звуковых волн, естественных и искусственных ионизирующих излучений во избежание их вредного воздействия на окружающую среду и организм человека;
- развитие умения планировать в повседневной жизни свои действия с применением полученных знаний законов механики, электродинамики, термодинамики и тепловых явлений с целью сбережения здоровья;
- развитие духовно нравственного воспитания.

Достижение целей рабочей программы по физике *обеспечивается решением следующих задач*:

- сохранение и укрепление физического, психологического и социального здоровья обучающихся, обеспечение их безопасности;
- формирование позитивной мотивации обучающихся к учебной деятельности;
- обеспечение условий, учитывающих индивидуально-личностные особенности обучающихся;
- совершенствование взаимодействия учебных дисциплин на основе интеграции;
- внедрение в учебно-воспитательный процесс современных образовательных технологий, формирующих ключевые компетенции;
- развитие дифференциации обучения;
- знакомство обучающихся с методом научного познания и методами исследования объектов и явлений природы;
- приобретение обучающимися знаний о механических, тепловых, электромагнитных и квантовых явлениях, физических величинах, характеризующих эти явления;
- формирование у обучающихся умений наблюдать природные явления и выполнять опыты, лабораторные работы и экспериментальные исследования с использованием измерительных приборов, широко применяемых в практической жизни;
- овладение обучающимися общенаучными понятиями: природное явление, эмпирически установленный факт, проблема, гипотеза, теоретический вывод, результат экспериментальной проверки;
- понимание обучающимися отличий научных данных от непроверенной информации, ценности науки для удовлетворения бытовых, производственных и культурных потребностей человека.

Программа имеет базовый уровень, рассчитана на учащихся 7-9 классов общеобразовательной школы.

МКОУ «Дворцовская ООШ», является ресурсным центром в рамках реализации практической части программы деятельности федеральной стажировочной площадки по направлению «Духовно-нравственное воспитание и развитие подрастающего поколения». Поэтому материал каждого урока подобран с учетом способности обучающихся к нравственному самосовершенствованию.

Новизной данной программы является духовно-нравственное направление: формирование нравственных чувств и нравственно-этической ориентации детей,

создание мотивации к совершению хороших поступков и к оказанию помощи окружающим людям. Программа занятий включает историю русской и зарубежной физики, богатой фактами, знакомство с которыми способствует христианскому взгляду на вещи (например, великий английский физик и математик Исаак Ньютон был еще и богословом); анализ цитат духовно-нравственной тематики великих физиков; практические задачи, отражающие исторические факты и рассмотрение этих фактов с позиции нравственных ориентиров; знакомство с биографией великих ученых (М. Ломоносов, С. Ковалевская, К.Э.Циолковский и др.); а также содержит систему практической деятельности позволяющей вырабатывать правильную модель поведения.

Общая характеристика учебного предмета

Школьный курс физики — системообразующий для естественно-научных предметов, поскольку физические законы, лежащие в основе мироздания, являются основой содержания курсов химии, биологии, географии и астрономии. Физика вооружает школьников научным методом познания, позволяющим получать объективные знания об окружающем мире. В 7 и 8 классах происходит знакомство с физическими явлениями, методом научного познания, формирование основных физических понятий, приобретение умений измерять физические величины, проводить лабораторный эксперимент по заданной схеме. В 9 классе начинается изучение основных физических законов, лабораторные работы становятся более сложными, школьники учатся планировать эксперимент самостоятельно.

Физика раскрывает роль науки в экономическом и культурном развитии общества, способствует формированию современного научного мировоззрения. Для решения задач формирования основ научного мировоззрения, развития интеллектуальных способностей и познавательных интересов школьников в процессе изучения физики основное внимание следует уделять знакомству с методами научного познания окружающего мира, постановке проблем, требующих от учащихся самостоятельной деятельности по их разрешению.

Цели изучения физики:

В процессе изучения физики ученик научится применять полученные знания и умения для решения практических задач повседневной жизни, обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды.

Формы обучения: индивидуальное обучение, индивидуально-групповая, фронтальная, групповая, парная.

Формы контроля: устная, письменная, лабораторные работы, проектная деятельность.

Место предмета в учебном плане

Образовательный план МКОУ «Дворцовская ООШ» отводит 204 часов для обязательного изучения физики на ступени основного общего образования, в том числе в VII, VIII и IX классах по 68 учебных часов из расчета 2 учебных часа в неделю. В соответствии с учебным планом курсу физики предшествует курс «Окружающий мир», включающий некоторые знания из области физики и астрономии. В свою очередь, содержание курса физики основной школы, являясь базовым звеном в системе непрерывного естественнонаучного образования, служит основой для последующей уровневой и профильной дифференциации. Курс физики структурируется на основе рассмотрения различных форм движения материи в порядке их усложнения: механические явления, тепловые явления, электромагнитные явления, квантовые явления. Физика в основной школе изучается на уровне рассмотрения явлений природы, знакомства с основными законами физики и применением этих законов в технике и повседневной жизни.

Личностные результаты освоения учебного предмета

7 класс

Личностными результатами изучения курса «Физика» в 7-м классе является формирование следующих умений:

- Определять и высказывать под руководством педагога самые общие для всех людей правила поведения при сотрудничестве (этические нормы).
- В предложенных педагогом ситуациях общения и сотрудничества, опираясь на общие для всех правила поведения, делать выбор, при поддержке других участников группы и педагога, как поступить.

Средством достижения этих результатов служит организация на уроке работы в парах постоянного и сменного состава, групповые формы работы.

Предметные результаты:

- знания о природе важнейших физических явлений окружающего мира и понимание смысла физических законов, раскрывающих связь изученных явлений;
- умения пользоваться методами научного исследования явлений природы, проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять полученные результаты и делать выводы, оценивать границы погрешностей результатов измерений;
- умения применять теоретические знания по физике на практике, решать физические задачи на применение полученных знаний;
- коммуникативные умения докладывать о результатах своего исследования, участвовать в дискуссии, кратко и точно отвечать на вопросы, использовать справочную литературу и другие источники информации.

Частные предметные результаты изучения физики в 7 классе:

- Понимание и способность объяснять такие физические явления, как свободное падение тел, атмосферное давление, плавание тел, диффузия, большая сжимаемость газов, малая сжимаемость жидкостей и твёрдых тел;
- умение измерять расстояние, промежуток времени, скорость, массу, силу, работу силы, мощность, кинетическую энергию, потенциальную энергию; овладение экспериментальными методами исследования в процессе самостоятельного изучения зависимости пройденного пути от времени, удлинения пружины от приложенной силы, силы тяжести от массы тела, силы трения скольжения от площади соприкосновения тел и силы нормального давления, силы Архимеда от объёма вытесненной воды;
- понимание смысла основных физических законов и умение применять их на практике (закон всемирного тяготения, законы Паскаля и Архимеда, закон сохранения энергии);
- понимание принципов действия машин, приборов и технических устройств, с которыми каждый человек постоянно встречается в повседневной жизни, и способов обеспечения безопасности при их использовании;
- овладение разнообразными способами выполнения расчётов для нахождения неизвестной величины в соответствии с условиями поставленной задачи на основании использования законов физики;
- способность использовать полученные знания, умения и навыки а в повседневной жизни (быт, экология, охрана здоровья, охрана окружающей среды, техника безопасности и др.)

8-й класс

Личностными результатами изучения предметно-методического курса «Физика» в 8-м классе является формирование следующих умений:

- Самостоятельно определять и высказывать общие для всех людей правила поведения при совместной работе и сотрудничестве (этические нормы).
- В предложенных педагогом ситуациях общения и сотрудничества, опираясь на общие для всех простые правила поведения, самостоятельно делать выбор, какой поступок совершить.

Средством достижения этих результатов служит организация на уроке работы в парах постоянного и сменного состава, групповые формы работы.

Предметные результаты:

- знания о природе важнейших физических явлений окружающего мира и понимание смысла физических законов, раскрывающих связь изученных явлений;
- умения пользоваться методами научного исследования явлений природы, проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять полученные результаты и делать выводы, оценивать границы погрешностей результатов измерений;
- умения применять теоретические знания по физике на практике, решать физические задачи на применение полученных знаний;
- умения и навыки применять полученные знания для объяснения принципов действия важнейших технических устройств, решения практических задач повседневной жизни, обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды;
- формирование убеждения в закономерной связи и познаваемости явлений природы, в объективности научного знания, высокой ценности науки в развитии материальной и духовной культуры людей;
- развитие теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, строить модели и выдвигать гипотезы, отыскивать и формулировать доказательства выдвинутых гипотез, выводить из экспериментальных фактов и теоретических моделей физические законы;
- коммуникативные умения докладывать о результатах своего исследования, участвовать в дискуссии, кратко и точно отвечать на вопросы, использовать справочную литературу и другие источники информации.

Частные предметные результаты изучения физики в 8 классе:

- понимание и способность объяснять такие физические явления, как процессы испарения и плавления вещества, охлаждение жидкости при испарении, изменение внутренней энергии тела в результате теплопередачи или работы внешних сил, электризация тел, нагревание проводников электрическим током, отражение и преломление света;
- умения измерять температуру, количество теплоты, удельную теплоемкость вещества, удельную теплоту плавления вещества, влажность воздуха, силу электрического тока, электрическое напряжение, электрический заряд, электрическое сопротивление, фокусное расстояние собирающей линзы, оптическую силу линзы;
- владение экспериментальными методами исследования в процессе самостоятельного
- изучения силы тока на участке цепи от электрического напряжения, электрического сопротивления проводника от его длины, площади поперечного сечения и материала,
- угла отражения от угла падения света; понимание смысла основных физических

законов и умение применять их на практике: закон сохранения энергии, закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля—Ленца;

- понимание принципов действия машин, приборов и технических устройств, с которыми каждый человек постоянно встречается в повседневной жизни, и способов обеспечения безопасности при их использовании;
- овладение разнообразными способами выполнения расчетов для нахождения неизвестной величины в соответствии с условиями поставленной задачи на основании использования законов физики;
- умение использовать полученные знания, умения и навыки в повседневной жизни
- (быт, экология, охрана здоровья, охрана окружающей среды, техника безопасности и др.)

9-й классы

Личностными результатами изучения учебно-методического курса «Физика» в 9-м классах является формирование следующих умений:

- Самостоятельно определять и высказывать общие для всех людей правила поведения при общении и сотрудничестве (этические нормы общения и сотрудничества).
- В самостоятельно созданных ситуациях общения и сотрудничества, опираясь на общие для всех простые правила поведения, делать выбор, какой поступок совершить.

Средством достижения этих результатов служит учебный материал – умение определять свое отношение к миру.

Предметные результаты:

- знания о природе важнейших физических явлений окружающего мира и понимание смысла физических законов. Раскрывающих связь изученных явлений;
- умения пользоваться методами научного исследования явлений природы, проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять полученные результаты и делать выводы, оценивать границы погрешностей результатов измерений;
- умения применять теоретические знания по физике на практике, решать физические задачи на применение полученных знаний;
- умения и навыки применять полученные знания для объяснения принципов действия важнейших технических устройств, решения практических задач повседневной жизни, обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды;
- формирование убеждения в закономерной связи и познаваемости явлений природы, в объективности научного знания, высокой ценности науки в развитии материальной и духовной культуры людей;
- развитие теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, строить модели и выдвигать гипотезы, отыскивать и формулировать доказательства выдвинутых гипотез, выводить из экспериментальных фактов и теоретических моделей физические законы;
- коммуникативные умения докладывать о результатах своего исследования, участвовать в дискуссии, кратко и точно отвечать на вопросы, использовать справочную литературу и другие источники информации.

Частные предметные результаты изучения физики в 9 классе:

• Понимание и способность объяснять механические колебания и волны, звук, магнитное поле и его характеристики, электромагнитную индукцию, отражение и

преломление света, дисперсию света, возникновение линейчатого спектра излучения

- Умение измерять величины, характеризующие колебательные движения, определять направление магнитных сил по правилу левой руки, фокусное расстояние и оптическую силу собирающей линзы
- Владеть экспериментальными методами исследования зависимости периода колебания математического и пружинного маятника от его длины, массы и амплитуды колебаний, направления индукционного тока от условий его возбуждения, угла отражения от угла падения луча
- Понимание смысла основных физических законов и умение применять их на практике: закон электромагнитной индукции, закон прямолинейного распространения и отражения света
- Понимать принцип действия машин, приборов и устройств с которыми человек встречается в повседневной жизни
- Уметь использовать полученные знания, умения и навыки в повседневной жизни: в быту, при охране здоровья, технике безопасности и охране окружающей среды.

Содержание предмета

7 класс

Введение. Физика и физические методы изучения природы.

Физика – наука о природе. Наблюдение и описание физических явлений. Физические приборы. Физические величины и их измерение. Погрешности измерений. Международная система единиц. Физика и техника. Физика и развитие представлений о материальном мире.

Демонстрации.

Примеры механических, тепловых, электрических, магнитных и световых явлений. Физические приборы.

Лабораторная работа.

1. Определение цены деления измерительного прибора.

Первоначальные сведения о строении вещества.

Строение вещества. Опыты, доказывающие атомное строение вещества. Тепловое движение атомов и молекул. Броуновское движение. Диффузия в газах, жидкостях и твердых телах. Взаимодействие частиц вещества. Агрегатные состояния вещества. Модели строения газов, жидкостей и твердых тел и объяснение свойств вещества на основе этих моделей.

Демонстрации.

Диффузия в газах и жидкостях. Сохранение объема жидкости при изменении формы сосуда. Сцепление свинцовых цилиндров.

Лабораторная работа.

2.Определение размеров малых тел.

Взаимодействие тел.

Механическое движение. Относительность механического движения. Траектория. Путь. Прямолинейное равномерное движение. Скорость равномерного прямолинейного движения. Неравномерное движение. Графики зависимости пути и модуля скорости от времени движения. Явление инерции. Инертность тел. Масса тела. Измерение массы тела с помощью весов. Плотность вещества. Методы измерения массы и плотности. Взаимодействие тел. Сила. Правило сложения сил, действующих по одной прямой. Сила упругости. Закон Гука. Методы измерения силы. Динамометр. Графическое изображение силы. Явление тяготения. Сила тяжести. Связь между силой тяжести и массой. Вес тела.

Сила трения. Трение скольжения, качения, покоя. Подшипники. Центр тяжести тела. Физическая природа небесных тел Солнечной Системы.

Демонстрации.

Равномерное прямолинейное движение. Относительность движения. Явление инерции. Взаимодействие тел. Сложение сил. Сила трения.

Лабораторные работы.

- 3.Измерение массы тела на рычажных весах.
- 4. Измерение объема твердого тела.
- 5. Определение плотности твердого тела.
- 6. Градуирование пружины и измерение сил динамометром.
- 7. Измерение силы трения с помощью динамометра.

Давление твердых тел, газов, жидкостей.

Давление. Давление твердых тел. Давление газа. Объяснение давления на основе молекулярно-кинетических представлений. Закон Паскаля. Давление в жидкости и газе. Сообщающиеся сосуды. Шлюзы. Гидравлический пресс. Гидравлический тормоз.

Атмосферное давление. Опыт Торричелли. Методы измерения давления. Барометранероид. Изменение атмосферного давления с высотой. Манометр. Насос.

Закон Архимеда. Условие плавания тел. Плавание тел. Воздухоплавание.

Демонстрации. Зависимость давления твердого тела на опору от действующей силы и площади опоры. Обнаружение атмосферного давления. Измерение атмосферного давления барометром-анероидом. Закон Паскаля. Гидравлический пресс. Закон Архимеда.

Лабораторные работы.

- 8.Определение выталкивающей силы, действующей на погруженное в жидкость тело.
 - 9. Выяснение условий плавания тела в жидкости.

Работа и мощность. Энергия.

Механическая работа. Мощность. Простые механизмы. Условия равновесия рычага. Момент силы. Равновесие тела с закрепленной осью вращения. Виды равновесия тел. «Золотое правило» механики. Коэффициент полезного действия. Потенциальная и кинетическая энергия. Превращение энергии.

Демонстрации. Простые механизмы.

Лабораторные работы.

- 10. Выяснение условия равновесия рычага.
- 11.Определение КПД при подъеме тела по наклонной плоскости.

8 класс

Тепловые явления

Тепловое движение. Тепловое равновесие. Температура. Внутренняя энергия. Два способа изменения внутренней энергии: теплопередача и работа. Виды теплопередачи. Количество теплоты. Удельная теплоемкость вещества. Удельная теплота сгорания топлива. Закон сохранения энергии в механических и тепловых процессах.

Агрегатные состояния вещества. Плавление и отвердевание тел. Температура плавления. Удельная теплота плавления. Испарение и конденсация. Насыщенный пар. Относительная влажность воздуха и ее измерение. Психрометр. Кипение. Зависимость температуры кипения от давления. Удельная теплота парообразования. Объяснение изменения агрегатных состояний на основе молекулярно-кинетических представлений. Преобразования энергии в тепловых двигателях. Двигатель внутреннего сгорания. Паровая турбина. Холодильник. КПД теплового двигателя. Экологические проблемы использования тепловых машин.

Демонстрации.

Явление испарения. Кипение воды. Зависимость температуры кипения от давления. Плавление и кристаллизация веществ. Измерение влажности воздуха психрометром.

Устройство четырехтактного двигателя внутреннего сгорания. Устройство паровой турбины. Изменение энергии тела при совершении работы. Конвекция в жидкости. Теплопередача путем излучения. Сравнение удельных теплоемкостей различных веществ.

Лабораторные работы.

- 1. Сравнение количеств теплоты при смешивании воды разной температуры.
- 2. Измерение удельной теплоемкости твердого тела.
- 3.Измерение влажности воздуха.

Электрические явления

Электризация тел. Два рода электрических зарядов. Проводники, непроводники (диэлектрики) и полупроводники. Взаимодействие заряженных тел. Электрическое поле. Закон сохранения электрического заряда. Делимость электрического заряда. Электрон. Строение атомов.

Электрического тока. Гальванические элементы и аккумуляторы. Действия электрического тока. Направление электрического тока. Электрическая цепь. Электрический ток в металлах. Носители электрического тока в полупроводниках, газах и электролитах. Полупроводниковые приборы. Сила тока. Амперметр. Электрическое напряжение. Вольтметр. Электрическое сопротивление. Закон Ома для участка электрической цепи. Удельное электрическое сопротивление. Реостаты. Последовательное и параллельное соединения проводников.

Работа и мощность тока. Количество теплоты, выделяемое проводником с током. Лампа накаливания. Электрические нагревательные приборы. Электрический счетчик. Расчет электроэнергии, потребляемой электроприбором. Короткое замыкание. Плавкие предохранители. Конденсатор. Правила безопасности при работе с электроприборами.

Демонстрации.

Электризация тел. Два рода электрических зарядов. Устройство и действие электроскопа. Проводники и изоляторы. Электризация через влияние. Перенос электрического заряда с одного тела на другое. Источники постоянного тока. Составление электрической цепи.

Лабораторные работы.

- 4. Сборка электрической цепи и измерение силы тока в ее различных участках.
- 5. Измерение напряжения на различных участках электрической цепи.
- 6. Регулирование силы тока реостатом.
- 7. Измерение сопротивления при помощи амперметра и вольтметра.
- 8. Измерение работы и мощности электрического тока в лампе.

Электромагнитные явления

Опыт Эрстеда. Магнитное поле тока. Магнитное поле катушки с током. Электромагниты и их применение. Постоянные магниты. Магнитное поле Земли. Магнитные бури. Действие магнитного поля на проводник с током. Электродвигатель. Динамик и микрофон.

Демонстрации.

Опыт Эрстеда. Принцип действия микрофона и громкоговорителя.

Лабораторные работы.

- 9. Сборка электромагнита и испытание его действия.
- 10. Изучение электрического двигателя постоянного тока (на модели).

Световые явления

Источники света. Прямолинейное распространение света в однородной среде. Отражение света. Видимое движение светил. Закон отражения. Плоское зеркало. Преломление света. Линза. Фокусное расстояние и оптическая сила линзы. Построение изображений в линзах. Глаз как оптическая система. Оптические приборы.

Демонстраиии.

Источники света. Прямолинейное распространение света. Закон отражения света. Изображение в плоском зеркале. Преломление света. Ход лучей в собирающей и

рассеивающей линзах. Получение изображений с помощью линз. Принцип действия проекционного аппарата. Модель глаза.

Лабораторные работы.

11. Получение изображения при помощи линзы.

9 класс

Законы взаимодействия и движения тел

Материальная точка. Система отсчета. Перемещение. Скорость прямолинейного равномерного движения. Прямолинейное равноускоренное движение. Мгновенная скорость. Ускорение. Графики зависимости скорости и перемещения от времени при прямолинейном равномерном и равноускоренном движениях. Относительность механического движения. Геоцентрическая и гелиоцентрическая системы мира. Инерциальная система отсчета. Первый, второй и третий законы Ньютона. Свободное падение. Невесомость. Закон всемирного тяготения. Искусственные спутники Земли. Импульс. Закон сохранения импульса. Реактивное движение.

Демонстрации.

Относительность движения. Равноускоренное движение. Свободное падение тел в трубке Ньютона. Направление скорости при равномерном движении по окружности. Второй закон Ньютона. Третий закон Ньютона. Невесомость. Закон сохранения импульса. Реактивное движение..

Лабораторные работы и опыты.

- 1. Исследование равноускоренного движения без начальной скорости.
- 2.Измерение ускорения свободного падения.

Механические колебания и волны. Звук.

Колебательное движение. Пружинный, нитяной, математический маятники. Свободные и вынужденные колебания. Затухающие колебания. Колебательная система. Амплитуда, период, частота колебаний. Превращение энергии при колебательном движении. Резонанс.

Распространение колебаний в упругих средах. Продольные и поперечные волны. Длина волны. Скорость волны. Звуковые волны. Скорость звука. Высота, тембр и громкость звука. Эхо.

Демонстрации.

Механические колебания. Механические волны. Звуковые колебания. Условия распространения звука.

Лабораторная работа.

3. Исследование зависимости периода и частоты свободных колебаний нитяного маятника от длины нити.

Электромагнитное поле

Магнитное поле. Однородное и неоднородное магнитное поле. Направление тока и направление линий его магнитного поля. Правило буравчика. Обнаружение магнитного поля. Правило левой руки. Индукция магнитного поля. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Направление индукционного тока. Правило Ленца. Явление самоиндукции. Переменный ток. Генератор переменного тока. Преобразования энергии в электрогенераторах. Трансформатор. Передача электрической энергии на расстояние.

Электромагнитное поле. Электромагнитные волны. Скорость электромагнитных волн. Влияние электромагнитных излучений на живые организмы. Колебательный контур. Получение электромагнитных колебаний. Принципы радиосвязи и телевидения. Электромагнитная природа света. Преломление света. Показатель преломления. Дисперсия света. Типы оптических спектров. Поглощение и испускание света атомами. Происхождение линейчатых спектров.

Демонстрации.

Устройство конденсатора. Энергия заряженного конденсатора. Электромагнитные колебания. Свойства электромагнитных волн. Дисперсия света. Получение белого света при сложении света разных цветов.

Лабораторные работы.

- 4. Изучение явления электромагнитной индукции.
- 5. Наблюдение сплошного и линейчатого спектров.

Строение атома и атомного ядра.

Радиоактивность как свидетельство сложного строения атомов. Альфа-, бета-, гаммаизлучения. Опыты Резерфорда. Ядерная модель атома. Радиоактивные превращения атомных ядер. Сохранение зарядового и массового чисел при ядерных реакциях. Методы наблюдения и регистрации частиц в ядерной физике.

Протонно-нейтронная модель ядра. Физический смысл зарядового и массового чисел. Изотопы. Правила смещения. Энергия связи частиц в ядре. Деление ядер урана. Цепная реакция. Ядерная энергетика. Экологические проблемы использования АЭС. Дозиметрия. Период полураспада. Закон радиоактивного распада. Влияние радиоактивных излучений на живые организмы. Термоядерная реакция. Источники энергии Солнца и звезд.

Демонстрации.

Модель опыта Резерфорда. Наблюдение треков в камере Вильсона. Устройство и действие счетчика ионизирующих частиц.

Лабораторные работы.

- 6. Измерение естественного радиационного фона дозиметром.
- 7. Изучение деления ядра атома урана по фотографии треков.
- 8.Оценка периода полураспада находящихся в воздухе продуктов распада газа радона.
 - 9.Изучение треков заряженных частиц по готовым фотографиям.

Строение и эволюция Вселенной.

Состав, строение и происхождение Солнечной системы. Планеты и малые тела Солнечной системы. Строение, излучение и эволюция Солнца и звезд. Строение и эволюция Вселенной.

Итоговое повторение

Тематическое планирование

7 класс, 68 часов (2 ч в неделю)

No॒	Раздел темы	Количество часов	Лабораторные работы	Контрольные работы
1	Введение	4	1	
2	Первоначальные сведения о строении вещества	6	1	
3	Взаимодействие тел	23	5	2
4	Давление твердых тел, жидкостей и газов	21	2	2
5	Работа и мощность. Энергия	14	2	1
	Итого	68	11	5

№	Разделы темы	Количество часов	Лабораторные работы	Контрольные работы
1	Тепловые явления	23	3	3
2	Электрические явления	29	5	3
3	Электромагнитные явления	5	2	1
4	Световые явления	11	1	1
	Итого	68	11	8

9 класса (3 часа в неделю – 102 часов)

№	Раздел темы	Количество часов	Лабораторные работы	Контрольные работы
1	Законы движения и взаимодействия тел	33	2	2
2	Механические колебания и волны. Звук	15	1	1
3	Электромагнитное поле	20	1	1
4	Строение атома и атомного ядра	17	2	1
5	Строение и эволюция Вселенной	8		
6	Повторение	9		1
	Итого	102	6	6

Материально-техническое обеспечение

Номенклатура учебного оборудования по физике определяется стандартами физического образования, минимумом содержания учебного материала, базисной программой общего образования. Лабораторное и демонстрационное оборудование указано в Перечне учебного оборудования по физике для общеобразовательных учреждений РФ.

Для постановки демонстраций достаточно одного экземпляра оборудования, для фронтальных лабораторных работ не менее одного комплекта оборудования на двоих учащихся.

Технические средства обучения

- 1. Компьютер.
- 2. Мультимедийный проектор.
- 3. Принтер, сканер, ксерокс.

Учебно-методическое обеспечение

- Примерные программы по учебным предметам. Физика. 7-9 классы: проект. М.: Просвещение, 2011. -48 с. (Стандарты второго поколения)
- Авторская программа Е.М.Гутник, А.В. Перышкин из сборника "Программы для общеобразовательных учреждений. Физика. Астрономия. 7 11 кл. / сост. В.А. Коровин, В.А. Орлов. М.: Дрофа, 2011.
- Перышкин А.В., Сборник задач по физике. М.: Экзамен, 2013 272с
- Ханнанов Н.К., Тесты к учебнику А.В. Перышкина 7 класс- М.: Дрофа, 2014
- Перышкин А.В., Физика-7– М.: Дрофа, 2015

- Перышкин А.В., Физика-8– М.: Дрофа, 2015
- Перышкин А.В., Физика-9 М.: Дрофа, 2015

Интернет-ресурсы:

- Виртуальные лабораторные работы. Виртуальные демонстрации экспериментов http:phdep.ifmo.ru
- Трехмерные анимации и визуализация по физике, сопровождаются теоретическими объяснениями http:physics.nad.ru
- ФИПИ http://school-box.ru

Планируемые результаты освоения курса физики 7 класс Метапредметные

Регулятивные УУД:

- Определять и формулировать цель деятельности на уроке.
- Ставить учебную задачу.
- Учиться составлять план и определять последовательность действий.
- Учиться высказывать своё предположение (версию) на основе работы с иллюстрацией учебника.
- Учиться работать по предложенному учителем плану.

Средством формирования этих действий служат элементы технологии проблемного обучения на этапе изучения нового материала.

- Учиться отличать верно выполненное задание от неверного.
- Учиться совместно с учителем и другими учениками давать эмоциональную оценку деятельности класса на уроке.

Средством формирования этих действий служит технология оценивания образовательных достижений.

Познавательные УУД:

- Ориентироваться в своей системе знаний: отличать новое от уже известного с помощью учителя.
- Делать предварительный отбор источников информации: ориентироваться в учебнике (на развороте, в оглавлении, в словаре).
- Добывать новые знания: находить ответы на вопросы, используя учебник, свой жизненный опыт и информацию, полученную на уроке.
- Перерабатывать полученную информацию: делать выводы в результате совместной работы всего класса.
- Перерабатывать полученную информацию: сравнивать и классифицировать.
- Преобразовывать информацию из одной формы в другую: составлять физические рассказы и задачи на основе простейших физических моделей (предметных, рисунков, схематических рисунков, схем); находить и формулировать решение задачи с помощью простейших моделей (предметных, рисунков, схематических рисунков, схем).
- Средством формирования этих действий служит учебный материал, задания учебника и задачи из сборников.

Коммуникативные УУД:

- Донести свою позицию до других: оформлять свою мысль в устной и письменной речи (на уровне одного предложения или небольшого текста).
- Слушать и понимать речь других.
- Читать и пересказывать текст.

Средством формирования этих действий служит технология проблемного обучения.

- Совместно договариваться о правилах общения и поведения в школе и следовать им
- Учиться выполнять различные роли в группе (лидера, исполнителя, критика).

Средством формирования этих действий служит организация работы в парах постоянного и сменного состава.

Предметные:

Ученик научится:

- соблюдать правила безопасности и охраны труда при работе с учебным и лабораторным оборудованием;
- понимать смысл основных физических терминов: физическое тело, физическое явление, физическая величина, единицы измерения;
- распознавать проблемы, которые можно решить при помощи физических методов; анализировать отдельные этапы проведения исследований и интерпретировать результаты наблюдений и опытов;
- ставить опыты по исследованию физических явлений или физических свойств тел без использования прямых измерений; при этом формулировать проблему/задачу учебного эксперимента; собирать установку из предложенного оборудования; проводить опыт и формулировать выводы.
 - понимать роль эксперимента в получении научной информации;
- проводить прямые измерения физических величин: время, расстояние, масса тела, объем, сила, температура;
- проводить исследование зависимостей физических величин с использованием прямых измерений: при этом конструировать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования;
- проводить косвенные измерения физических величин: при выполнении измерений собирать экспериментальную установку, следуя предложенной инструкции, вычислять значение величины и анализировать полученные результаты с учетом заданной точности измерений;
- понимать принципы действия машин, приборов и технических устройств, условия их безопасного использования в повседневной жизни;
- использовать при выполнении учебных задач научно-популярную литературу о физических явлениях, справочные материалы, ресурсы Интернет.
- распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений
- описывать изученные свойства тел и механические явления, используя физические величины: путь, скорость, масса тела, плотность вещества, сила (сила тяжести, сила упругости, сила трения), давление, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД при совершении работы с использованием простого механизма; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- анализировать свойства тел, механические явления и процессы, используя физические законы (закон Архимеда), при этом различать словесную формулировку закона и его математическое выражение;
 - решать задачи, используя физические законы
- объяснять на базе имеющихся знаний основные свойства или условия протекания диффузии, агрегатные состояния веществ, плавание и условия равновесие тел
- различать основные признаки изученных физических моделей строения газов, жидкостей и твердых тел;

ученик получит возможность научиться:

• осознавать ценность научных исследований, роль физики в расширении представлений об окружающем мире и ее вклад в улучшение качества жизни;

- использовать приемы построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- сравнивать точность измерения физических величин по величине их относительной погрешности при проведении прямых измерений;
- воспринимать информацию физического содержания в научно-популярной литературе и средствах массовой информации, критически оценивать полученную информацию, анализируя ее содержание и данные об источнике информации;
- создавать собственные письменные и устные сообщения о физических явлениях на основе нескольких источников информации, сопровождать выступление презентацией, учитывая особенности аудитории сверстников
- использовать знания о механических явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры практического использования физических знаний о механических явлениях и физических законах.

8 класс Метапредметные

Регулятивные УУД:

- Определять цель деятельности на уроке самостоятельно.
- Учиться формулировать учебную проблему совместно с учителем.
- Учиться планировать учебную деятельность на уроке.
- Высказывать свою версию, пытаться предлагать способ её проверки.
- Работая по предложенному плану, использовать необходимые средства (учебник, простейшие приборы и инструменты).

Средством формирования этих действий служат элементы технологии проблемного обучения на этапе изучения нового материала.

• Определять успешность выполнения своего задания при помощи учителя.

Средством формирования этих действий служит технология оценивания учебных успехов. Познавательные $YY\mathcal{I}$:

- Ориентироваться в своей системе знаний: понимать, что нужна дополнительная информация (знания) для решения учебной задачи в один шаг.
- Делать предварительный отбор источников информации для решения учебной задачи.
- Добывать новые знания: находить необходимую информацию как в учебнике, так и в предложенных учителем словарях и энциклопедиях.
- Добывать новые знания: извлекать информацию, представленную в разных формах (текст, таблица, схема, иллюстрация и др.).
- Перерабатывать полученную информацию: наблюдать и делать самостоятельные выводы.

Средством формирования этих действий служит учебный материал учебника, словари, энциклопедии

Коммуникативные УУД:

- Донести свою позицию до других: оформлять свою мысль в устной и письменной речи (на уровне одного предложения или небольшого текста).
- Слушать и понимать речь других.
- Выразительно пересказывать текст.
- Вступать в беседу на уроке и в жизни.

Средством формирования этих действий служит технология проблемного диалога и технология продуктивного чтения.

- Совместно договариваться о правилах общения и поведения в школе и следовать им
- Учиться выполнять различные роли в группе (лидера, исполнителя, критика). Средством достижения этих результатов служит организация на уроке работы в парах постоянного и сменного состава, групповые формы работы.

Предметные

Ученик научится:

- проводить прямые измерения физических величин: атмосферное давление, влажность воздуха, напряжение, сила тока; при этом выбирать оптимальный способ измерения и использовать простейшие методы оценки погрешностей измерений.
- распознавать тепловые явления и объяснять на базе имеющихся знаний основные свойства или условия протекания этих явлений: изменение объема тел при нагревании (охлаждении), большая сжимаемость газов, малая сжимаемость жидкостей и твердых тел; тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, различные способы теплопередачи (теплопроводность, конвекция, излучение), поглощение энергии при испарении жидкости и выделение ее при конденсации пара, зависимость температуры кипения от давления;
- описывать изученные свойства тел и тепловые явления, используя физические величины: количество теплоты, внутренняя энергия, температура, удельная теплоемкость вещества, удельная теплота плавления, удельная теплота парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- анализировать свойства тел, тепловые явления и процессы, используя основные положения атомно-молекулярного учения о строении вещества и закон сохранения энергии;
- приводить примеры практического использования физических знаний о тепловых явлениях;
- решать задачи, используя закон сохранения энергии в тепловых процессах и формулы, связывающие физические величины (количество теплоты, температура, удельная теплоемкость вещества, удельная теплота плавления, удельная теплота парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.
- распознавать электромагнитные явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: электризация тел, взаимодействие зарядов, электрический ток и его действия (тепловое, химическое, магнитное), взаимодействие магнитов,
- составлять схемы электрических цепей с последовательным и параллельным соединением элементов, различая условные обозначения элементов электрических цепей (источник тока, ключ, резистор, реостат, лампочка, амперметр, вольтметр).
- использовать оптические схемы для построения изображений в плоском зеркале и собирающей линзе.
- описывать изученные свойства тел и электромагнитные явления, используя физические величины: электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа электрического поля, мощность тока, фокусное расстояние и оптическая сила линзы, скорость электромагнитных волн, длина волны и частота света; при описании верно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами.

- анализировать свойства тел, электромагнитные явления и процессы, используя физические законы: закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля-Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света; при этом различать словесную формулировку закона и его математическое выражение.
- приводить примеры практического использования физических знаний о электромагнитных явлениях
- решать задачи, используя физические законы (закон Ома для участка цепи, закон Джоуля-Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света) и формулы, связывающие физические величины (сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа электрического поля, мощность тока, фокусное расстояние и оптическая сила линзы, формулы расчета электрического сопротивления при последовательном и параллельном соединении проводников): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

•

Ученик получит возможность научиться:

- использовать знания о тепловых явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры экологических последствий работы двигателей внутреннего сгорания, тепловых и гидроэлектростанций;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных физических законов (закон сохранения энергии в тепловых процессах) и ограниченность использования частных законов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний о тепловых явлениях с использованием математического аппарата, так и при помощи методов оценки.
- использовать знания об электромагнитных явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения электрического заряда) и ограниченность использования частных законов (закон Ома для участка цепи, закон Джоуля-Ленца и др.).

9 класс Метапредметные

Регулятивные УУД:

- Самостоятельно формулировать цели урока после предварительного обсуждения.
- Учиться обнаруживать и формулировать учебную проблему.
- Составлять план решения проблемы (задачи).
- Работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно.

Средством формирования этих действий служат элементы технологии проблемного обучения на этапе изучения нового материала.

• В диалоге с учителем учиться вырабатывать критерии оценки и определять степень успешности выполнения своей работы и работы всех, исходя из имеющихся критериев.

Средством формирования этих действий служит технология оценивания учебных успехов. Познавательные VVI:

- Ориентироваться в своей системе знаний: самостоятельно предполагать, какая информация нужна для решения учебной задачи в несколько шагов.
- Отбирать необходимые для решения учебной задачи источники информации.
- Добывать новые знания: извлекать информацию, представленную в разных формах (текст, таблица, схема, иллюстрация и др.).
- Перерабатывать полученную информацию: сравнивать и группировать факты и явления; определять причины явлений, событий.
- Перерабатывать полученную информацию: делать выводы на основе обобщения знаний.
- Преобразовывать информацию из одной формы в другую: составлять простой план и сложный план учебно-научного текста.
- Преобразовывать информацию из одной формы в другую: представлять информацию в виде текста, таблицы, схемы.

Средством формирования этих действий служит учебный материал. *Коммуникативные УУД:*

- Донести свою позицию до других: оформлять свои мысли в устной и письменной речи с учётом своих учебных и жизненных речевых ситуаций.
- Донести свою позицию до других: высказывать свою точку зрения и пытаться её обосновать, приводя аргументы.
- Слушать других, пытаться принимать другую точку зрения, быть готовым изменить свою точку зрения.

Средством формирования этих действий служит технология проблемного диалога.

• Читать вслух и про себя тексты учебников и при этом: вести «диалог с автором» (прогнозировать будущее чтение; ставить вопросы к тексту и искать ответы; проверять себя); отделять новое от известного; выделять главное; составлять план.

Средством формирования этих действий служит технология продуктивного чтения.

- Договариваться с людьми: выполняя различные роли в группе, сотрудничать в совместном решении проблемы (задачи).
- Учиться уважительно относиться к позиции другого, пытаться договариваться.

Средством достижения этих результатов служит организация на уроке работы в парах постоянного и сменного состава, групповые формы работы.

Предметные

Выпускник научится:

- распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: равномерное и неравномерное движение, равномерное и равноускоренное прямолинейное движение, относительность механического движения, свободное падение тел, равномерное движение по окружности, инерция, взаимодействие тел, реактивное движение, передача давления твердыми телами, жидкостями и газами, атмосферное давление, колебательное движение, резонанс, волновое движение (звук);
- описывать изученные свойства тел и механические явления, используя физические величины: путь, перемещение, скорость, ускорение, период обращения, импульс тела, амплитуда, период и частота колебаний, длина волны и скорость ее распространения; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- анализировать свойства тел, механические явления и процессы, используя физические законы: закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил (нахождение равнодействующей силы), I, II и III законы Ньютона, закон сохранения импульса

- различать основные признаки изученных физических моделей: материальная точка, инерциальная система отсчета;
- решать задачи, используя физические законы (закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил, I, II и III законы Ньютона, закон сохранения импульса) и формулы, связывающие физические величины (импульс тела, коэффициент трения, амплитуда, период и частота колебаний, длина волны и скорость ее распространения): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.
- распознавать электромагнитные явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: электромагнитная индукция, действие магнитного поля на проводник с током и на движущуюся заряженную частицу, действие электрического поля на заряженную частицу, электромагнитные волны, прямолинейное распространение света, отражение и преломление света, дисперсия света.
- описывать изученные свойства тел и электромагнитные явления, используя физические величины: скорость электромагнитных волн, длина волны и частота света; при описании верно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами.
- решать задачи, используя физические законы и формулы, связывающие физические величины (скорость электромагнитных волн, длина волны и частота света, формулы расчета электрического сопротивления при последовательном и параллельном соединении проводников): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.
- распознавать квантовые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: естественная и искусственная радиоактивность, α -, β и γ -излучения, возникновение линейчатого спектра излучения атома;
- описывать изученные квантовые явления, используя физические величины: массовое число, зарядовое число, период полураспада, энергия фотонов; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- анализировать квантовые явления, используя физические законы и постулаты: закон сохранения энергии, закон сохранения электрического заряда, закон сохранения массового числа, закономерности излучения и поглощения света атомом, при этом различать словесную формулировку закона и его математическое выражение;
- различать основные признаки планетарной модели атома, нуклонной модели атомного ядра;
- приводить примеры проявления в природе и практического использования радиоактивности, ядерных и термоядерных реакций, спектрального анализа.
- указывать названия планет Солнечной системы; различать основные признаки суточного вращения звездного неба, движения Луны, Солнца и планет относительно звезд;
- понимать различия между гелиоцентрической и геоцентрической системами мира;

Выпускник получит возможность научиться:

- приводить примеры использования возобновляемых источников энергии; экологических последствий исследования космического пространств;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения механической энергии, закон

сохранения импульса, закон всемирного тяготения) и ограниченность использования частных законов;

- находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний по механике с использованием математического аппарата, так и при помощи методов оценки.
 - приводить примеры влияния электромагнитных излучений на живые организмы;
 - находить адекватную предложенной задаче физическую модель
- использовать полученные знания в повседневной жизни при обращении с приборами и техническими устройствами (счетчик ионизирующих частиц, дозиметр), для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
 - соотносить энергию связи атомных ядер с дефектом массы;
- приводить примеры влияния радиоактивных излучений на живые организмы; понимать принцип действия дозиметра и различать условия его использования;
- понимать экологические проблемы, возникающие при использовании атомных электростанций, и пути решения этих проблем, перспективы использования управляемого термоядерного синтеза.
- указывать общие свойства и отличия планет земной группы и планет-гигантов; малых тел Солнечной системы и больших планет; пользоваться картой звездного неба при наблюдениях звездного неба;
- различать основные характеристики звезд (размер, цвет, температура) соотносить цвет звезды с ее температурой;
 - различать гипотезы о происхождении Солнечной системы.